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Abstract. We give the complete description of null trajectories in the Kew-Newman 
space-time in terms of the parameters of the source and of the constants of motion. The 
conditions for orbital and vortical motion are studied in detail and we are able to give the 
locus of turning points for any choice of the parameters. 

1. Introduction 

Although there is yet no definite proof of the exktence of black holes it is widely 
believed that the outcome of a gravitational collapse is described by the family of 
Kerr-Newman solutions, which are parametrised by the mass M,  the specific angular 
momentum a and the charge Q of the source. 

The geodesic properties of the Schwarzschild (a  = CZ = 0) and Kerr (Q = 0) solutions 
were investigated in great detail (see Sharp 1979 for references) in connection with their 
astrophysical relevance, while the more general Kerr-Newman space-time was left 
aside. In fact it appears that ‘real’ black holes do not have a net amount of charge, 
although this possibility has not yet been ruled out. 

In this paper we complete and extend previous works (Carter 3 968, Johnston and 
Ruffini 1974, Young 1976, J>adhich and Kale 1977a,b, de Felice er a1 1980a,b, Calvani 
et a1 1980) giving the complete description of null geodesics outside the equatorial 
plane as radiation propagates to a distant observer along these trajectories. For 
completeness we shall consider either black holes (a2  f O2 s M 2 )  or naked singularities 
(a’+ Q2 > M 2 )  and we shall refer to the extended manifold -cc < r < +m). 

In Q 2 we shall study the locus of turning points as a function either of the parameters 
of the source or of the constants of motion of the null geodesics; in 8 3 we shall recall the 
conditions for orbital and vortical motion which will be studied in BB 4 and 5 .  

The physical results which are described in the last section are new as the behaviour 
of null geodesics outside the equatorial plane in the KN metric, as well as the existence of 
bound orbits, is studied in detail here for the first time. 

2. The r motion 

In the Kerr-Newman space-time the r motion of photons is described by the equation 
(Sharp 1979) 

(1) X 2 2  i. =[(rS+a2)-aa1]2-AK 
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where 

c = r2+a2 cos2 6 A =  r2-2Mr + a 2 +  Q 2 .  

In the above formulae M,  Q and a are the parameters which describe the background 
metric; M is the mass of the source, Q its charge and a its specific angular momentum. 
The parameters 1 and K are constants which describe the particle motion; 1 is the 
azimuthal angular momentum and K (Carter's fourth constant of motion, which is 
always non-negative) is related to the square of the total angular momentum at infinity 
(de Felice 1980). Note that the particle energy does not appear explicitly as it can be 
scaled to unity by an appropriate choice of the affine parameter. 

In order to study the behaviour of null orbits we shall search for the locus of turning 
points, which are solutions of the equation L = 0. From equation (1) one has 

K =[(r2+a2)-a1]2/A=K,  (2)  
which represents a three-parameter family of curves in the (K  - r )  plane. The study of 
this function is rather long and involved and therefore here we shall give only an outline 
of the procedure. Many figures are inserted in order to visualise and to clarify the 
physical dependence on the parameters. 

To know how the curves (2)  change by varying the parameters we first study the 
functions 

I = ( r 2  + a ' ) /a  I, (3a)  
1 = [ -r3 + 3Mr2 - r ( a  + 2 Q 2 )  - M a  ' ] / a  ( r  - M )  E le (3b)  

which give respectively the zeros and the extrema of K,. Note that the zeros of K, are 
also extrema. Equation (3a )  is simply a parabola in the ( I  - r )  plane, so we are left with 
the function (3b)  whose zeros and extrema are given respectively in the (Q - r )  plane by 

Q 2  = ( - r3  + 3Mr2 - Ma2 - ra2)/2r = Q: (4a 1 
and 

Q 2 =  [ ( r - M ) 3 + M ( M 2 - a 2 ) ] / M = Q : .  

The zeros and extrema of QT are respectively given, in the ( a  - r )  plane, by: 

a 2 = r 2 ( 3 M - r ) / ( r + M ) = a :  ( 5 a )  

a* = r2(2r - 3 M ) / M  = a:. (5b)  

a2=r( r2 -3Mr+3M2) /M=ai .  (6 )  

has always a flex point at r = M but no extrema and its zeros are along 

The functions a:, af  and a i  are shown in figure I t .  
We have now some kind of 'Chinese boxes': for any value of the parameter a figure 

1 allows us to draw the functions Q: and Qi ; this is done in figure 2. For any value of Q 
we can now, with the help of figure 2, draw the function le which gives the extrema of K,; 
this is done in figure 3 where also I,, which gives zeros and extrema of K,, is shown. Note 
that either 1, or I ,  crosses the 1 axis at 1 = a. Moreover, it is easy to show that in the black 
hole case (figure 3(c) )  the radius r- of the inner horizon is always smaller than the radius 

+ In all the figures we assume the mass M of the source as unit of length for the r coordinate, therefore M does 
not appear explicitly as a parameter. 
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Figure 5. The-functions a:, a: and a: are shown. They intersect at r = M h  where 
a‘= 3 J 3 ( 2 - J 3 ) M 2 = a ~ , , .  

where I ,  is maximum i.e. that 
r- = M - ( M 2  - a 2  - Q2)1’2 < rmax = M - [ M ( M 2  - Q 2  - a 2 )] 1/3 

We still need to know where the divergences of K, lie; this occurs where A = 0, which 
is also the condition which gives the horizons in the black hole case. It implies 

Q 2  = 2Mr - r 2  - a 2 =  (7) 

whose zeros are along 
2 2 a = 2 M r - r 2 = a ~ .  

In figure 4 are shown the functions (7) and (8) and the function 

Q 2  = r2 -2Mr = Q 3 
which gives the intersections of the ergosphere with the equatorial plane. 

We have now all that is needed (figures 1-4) to draw the function K, for any choice of 
the parameters, and therefore we are now able to investigate the locus of turning points 
for photons. This will be done in the last section as we believe it is useful to recall first 
the conditions for orbital and vortical motion to occur and to analyse them. 

3. Conditions for orbital and vortical motion 

In this section we shall briefly recall the results obtained in the Kerr metric (de Felice 
and Calvani 1972, BiEdk and Stuchlik 1976) concerning the description of the 6 
motion. Those results still hold in the Kerr-Newman metric as the charge Q does not 
affect the 6 equation of motion which reads: 

1 
(a  sin2 6 - l)’. 2 ‘ 2  E 6  = K - -  

sin2 6 
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1 2 3 
i l M  

-1 0 1 2 3 
r l M  

Figure 2. The functions Q:, Q: and Qi  are shown 
for the three ranges of interest of a’ (see figure 1). ( a )  
a 2 > a i , , .  The figure is drawn for a z = 2 M 2 .  (bj  
M z ~ . < a Z < a ~ , , ,  ( a ’ - 1 . 2 ~ ’ ) ) .  (c)  a2<!w’ (a2< 
0.51M’)). Cases ( a )  and ( b )  refer to naked singulari- 
ties while ( c )  refers to black holes (see figure 4). Note 
that I ,  has zeros at r > 0 only if  Q’C: QH,, and that 
~ ~ , , > ~ o n l y i f ~ ~ ~ < u ~ , , .  

Figure 3. The functions I ,  and 1, are sliown. They 
both intersect r = 0 at / = a. ( a )  a’> a:,,, and Q2 > 
Of,,, (a’.-2iMZ, Qz=0.5M2) ,  ( b )  a 2 < M Z < a &  
and ( M - ~ ~ ) < u ~ < Q ~ , ,  ( ~ ‘ = o . s M ’ , ~  Q‘= 
0.7MZ), (c)  a Z < M z  and Qz<jMz-n2) ( a Z =  
0 ,5M2,  0% = 0.3M2). The two vertical lines denote 
the horizons r,. Cases ( a )  and ( b )  refer to naked 
singularities while (c) refers to black holes. 

One can prove that there are two types of trajectories: those that cross the 
equatorial plane (orbital motion) and those that never cross it and are confined between 
two hyperboloids 6 =constant (voitical motion). The last ones are the only orbits 
entitled to enter the r-negative part of the manifold through the ring singularity in the 
equatorial plane. 

The conditions for orbital and vortical motion can be given in terms of the constants 
of motion K and I and of the parameter a. For vortical motion the following set of 
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-1 0 1 2 3 
r l M  

Figure 4. The functions a:, Qfi arid Q: are shown. Black holes exist only in the range 
a 2  G M 2  and Q2 6 ( M z  - a2).  

conditions must hold: 

K < ( / - a ) 2  

K 2 - 4 ~ 1  

-a < 1 <a .  (10c) 

These constraints are simultaneously satisfied in the dotted region of figure 5. In the 
region where 

K 2 ( / -a ) '  ( 1 0 4  

t 

0 0 0 1 

Figure 5. The constraints for ,orbital and vortical motion are shown. In the shaded area 
motion is forbidden as there I?'< 0. Vortical motion occurs only in the dotted area. 
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the motion is of the orbital type. The shaded area in figure 5 is forbidden as there 
4’ < 0, or the two (sin’ 0)  -roots of 8’ = 0 are both greater than 1. 

The particular value K = ( I  - a)’ corresponds to motion in the equatorial plane and 
this case has been analysed by Calvani et a1 (1980). Conditions (10) will be studied in 
detail in the following sections. 

4. Orbital motion 

Condition ( 1 0 d )  for orbital motion together with equation (2) can be written as 

(a’ - A)Z’ - 2r’aZ + r4  2 0 ( 1 1 )  

where Z = (1  - a ) .  This is satisfied, according to the sign of (a’ - A), when Z- < Z <Z, 
or Z >Z+ and Z < Z-; 2, are the roots of equation ( 1 1 )  

( 1 2 )  Z ,  = r 2 / ( a  * Jh). 
Z,  vanish only at r = 0 while their extrema are at r = 0 and along the curves 

Q2 = i [ - r 2 +  3Mr - a 2 - a a a 2 + 2 r ( r  - m ) ] =  6’ ( 1 3 ~ )  

Q’=i[ - r ’+3Mr-a2+a~a2+2r( r -M)]=d2 .  (136) 

and 

It can be proved that 0’ gives the extrema of 2- while 0’ gives those of Z,  for r < 0, 
r>M and those of 2- for O<r<M; moreover, r = O  is a maximum for 2- and a 
minimum for 2,. 

Let us now study 0’ and d’; the following properties hold: 

6 2 ’ 0  and Q’= -a2 a t r = O  

d 2 = M 2  and 0’ = ( M ~  - a’) a t r = M .  

The zeros of d’ and O2 are at r = 0 and along the curve 

a’= r ( r - - 3 ~ ) ’ / 4 ~ = a ; ;  (14) 

it is easy to show that a: gives the zeros of 6’ for r > 3M and those of Q’ for 0 < r < 3M, 
while r = 0 is a zero only for d’. It can be proved also that 

a2=r(2r-3M)’/4M=a? ( 1 5 )  

gives the extrema of d’ for 0 < r < M/2,  r > 3M/2 and those of Q’ for M/2 < r < 3M/2, 
together with r = M. One finds that r = M is a maximum for 0’ when M 2  < 4a2 and a 
minimum when M 2  > 4a ’. 

The functions a; ,  a? and 

(16) 

(the locus where 0’ = 6’) are plotted in figure 6 .  Figures 7 and 8 show respectively the 
behaviour of d’, Q‘ and of (lo)+ =Z++a .  The relevance of (lo)* as far as the 
description of null trajectories is concerned will be discussed in the last section. 

2 a’ = -2r(r - M )  = a lo 
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0 0 5  1 2 3 
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Figure 6. The functions a:, a i ,  a: and a:o are shown. The functions 0’ and d’ are real 
outside the shaded area enclosed by a:o. 

5. Vortical motion 

Condition ( lob)  and equation (2) can be combined to give 

( r 2  + a 2  - a 1 ) 2 / A a  -4al 

or equivalently 

a212 + 2a1[2A- ( r 2  + a’)]+ ( r 2  + a 2 ) 2  z= 0 (18) 

which is satisfied outside the horizons (when they exist) only for 1 < 0. The roots of 
equation (18) are 

( l u ) *  ={-(A+Q2-22Mr)f2[A(Q2-2Mr)]1’2}/a. (19) 

A detailed study of the functions ( l u ) *  is quite long and therefore we briefly describe 

(i) the functions (l,)* have no zeros and are always negative when A > 0, as can be 

(ii) at r = Q 2 / 2 M  the functions (L)+ and (lU)- have the same value i.e. 

here their main properties: 

seen from the coefficients of equation (18); 

( lo )+  = ( l u ) -  = - ( a 2 +  Q4/4M2)/a < -a ; 

(iii) from equation (17) it is easy to see that at 1 = -a the curves ( l o ) -  and (l,)+ are 

(iv) the maximum of ( l u ) + ,  denoted by (1,),,, in figure 8, lies on E,, as can be seen by 

(v) at r = 0 the functions (19) take the following values 

tangent, as shown in figure 8; 

studying the derivative of ( lo )+;  

2 1 / 2  

2 1/2  

l 1  = ( lo)+ = { - - (a2  + 2Q2)  + 2 [ Q 2 ( a 2  + Q )] } / a  > -a 

1 2 =  ( l , )_={-(a2+2Q2)--2[Q2(a2+Q )] } / a  <-a. 
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0 1 2 3 

,f r i M  
Q2 t 

0 1 2 3 
rib1 

Figure 7. The functions Q:, Qi,  02, 0’ and Q2=2Mr=Q:  are shown. ( a )  a 2 > M 2  
( u 2 = 2 M 2 ) ,  ( b )  M 2 / 2 < a 2 < M 2  ( u 2 = 0 . 7 5 M Z ) ,  (c) a Z < M 2 / 2  (n2=0 .45M2) .  

For any choice of 1 such that l I  < 1 < l 2  

( K ~ ) ~ = O = K ~ =  a 2 ( 1 - a ) 2 / ( a 2 + ~ 2 ) < - 4 a l  

and therefore in this range of 1 only vortical motion is allowed (see figure 5). Moreover 
(1 - a ) 2 > K o ,  and this result is useful in drawing figures 9 and 10 and to discriminate 
between orbital and vortical motion. 

6. Discussion 

The considerations developed in the previous sections allow us to draw the functions le, 
I,, ( lo )+ and €or any choice of the parameters. All these functions are plotted 
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Figure 8. The functions i,, I,, ( io), and ( lo )*  are drawn together. They allow 11s to draw ;he 
locuq of turning points K,  and to distinguish between orbital and vortical motion. (;) 
a*<M2 and QL>(M2-a2) ( a 2 = 0 . 5 M 2 ,  Q2=0.7M2) ,  ( h )  a 2 < M 2  and Q2<(MZ-a ) 
in2 = 0.5MZ, Q2 = 0.3M2). The full heavy curve marks ( lo) , ;  the full light curve marks 
(lt>)*; the chain curve marks !z and the broken curve marks 1,. Note that all the curves 
intersect at r = r*.  

together in figure 8 in order to obtain first some physical information on the 6 motion of 
photons and then to draw and study the locus of radial turning points (equation (2)). 
Note that all the curves cross on A = 0. 

From conditions (1 0) and figure 5 it is easy to verify that in the shaded part of figure 8 
it is either 8’ < 0 or sin’8 > 1 so that there no motion is allowed, and that the conditions 
for vortical niotion are fulfilled only in the dotted area. The following properties on the 
motion may now be deduced, 

(i) For 0 < 1 < a there are two 6 turning points unless K = 0; in this case the motion 
is on an hyperboloid i) =constant with sin2 6 = l / a .  

(ii) For ( l L ) m a x <  1 < 0 there are two turning points where (I,),,, = max(l,,)+. 
(iii) Only those photons with (lL),ax< 1 < a are entitled to cross the ring singularity 

and go to infinite negative r :  whether this occurs depends or1 the value of K as will be 
shown later. 



1940 M Calvani and R Turolla 

Figure 9. The locus of turning points in the naked singularity case. ( a )  a 2 < M Z ,  Q2> 
( M 2 - u Z ) ,  ~ > l > ( l " ) ~ ~ ~  ( a Z = 0 . 5 M 2 ,  Q2=0.7MZ,  I=-0.05M). The line K = ( l - a ) '  
separates the regions where orbital and vortical motion occur. In this case vortical 
trajectories can reach the r-negative part of the manifold as no turning points are met. ( b )  
I < (I,Jmax ( I  = -7M) .  In this case only orbital motion is allowed. Note that bound orbits 
can exist around the singularity. The shaded part of the figure is forbidden to motion as 
there either 4* or i2  is negative. 

(iv) K, has zeros only for 1 > a and therefore, for 1 > a, radial barriers prevent 
photons from reaching the r = 0 disc (whose boundary is the ring singularity). 

(v) For 1 < (I,),,, there are values of K for which d2 < 0 (see figure 9) and photons 
cannot reach the r = 0 disc. 

More information about the radial motion can be read off from the graphs of the 
locus of radial turning points. In figures 9 and 10 we have drawn the function Kt for 
several values of the parameters and in the most interesting cases, making use of the 
curves in figure 8. In the shaded parts of figures 9-10, 12<  0; the region where d2 < 0 is 
also shown (see also figure 5) .  

The following points are of interest. 
(i) In the black hole case photons coming from infinity are not able to cross the outer 

horizon when I > (I,),,, as they always find a turning point before; when 1 < (le)max 
photons can cross the horizons depending on the value of K. 

(ii) In the naked singularity case only some photons moving with vortical motion go 
through the ring singularity, depending on the values of the parameters as has been 
pointed out before. 

(iii) The existence of bound orbits is very interesting (in particular of orbits with 
r = constant) in the naked singularity case; this happens for example when (lo)min < I < 
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Figure 10. The locus of turning points in the black hole case. ( a )  I > (I,),,, ( a 2  = 0.5M2, 
Q2 = 0.49M2, 1 = 1.5M). Repulsive barriers prevent photons from reaching r = 0. ( b )  
a 2  = 0.4M2, Q2 = 0.2M2 and 1 = 1.23M. For this value of 1 bound orbits exist beyond the 
inner horizon. 

(le)max. The existence of such orbits has already been pointed out by Calvani et a1 
(1980), de Felice and Calvani (1979) and de Felice (1979). These orbits exist also in the 
black hole case under the inner horizon if the following conditions hold: M 2  < 4a2  (so 
that r = A4 is a maximum for Q2, see figure 7), Q:in < Q2 < ( M 2 -  a’) (so that (10)- has a 
maximum and a minimum before r - )  and 1 must be between this maximum of ( lo ) -  and 
(le)max (see figure 10(b)); one can show that these orbits do not exist outside the outer 
horizon. 

Owing to the presence of several parameters (a ,  Q, 1, K) the description of all 
possible cases of motion turns out to be quite complicated; anyhow the procedure we 
have used and the figures shown in this paper make it possible to draw the locus of radial 
turning points for any value of the parameters and therefore allow one to have a deep 
insight into the behaviour of photon trajectories in the Kerr-Newman space-time. 
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